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Abstract

The coupling of accurate computational fluid dynamics
analysis with optimal control theory has the potential to
advance active flow-control for complex flows including
flows involving aeroacoustic noise generation. However,
achieving this requires computational tools with high accu-
racy and the flexibility to handle complex geometries with
unstructured grids. To meet this goal, we present an op-
timal control framework for unsteady flows based on the
Discontinuous Galerkin Method (DGM) and, in this paper,
we apply this framework for both Burgers and compress-
ible Navier–Stokes flows. DGM discretizations have sev-
eral advantages for optimization studies including high for-
mal accuracy, local hp-refinement, and the ability to han-
dle unstructured grids. Both Burgers and Navier–Stokes
optimal control problems are solved numerically using a
DGM spectral-element discretization for spatial terms and
fourth-order Runge–Kutta time integration and the control
is updated using a nonlinear conjugate gradient method.
The gradient computation is performed using a continu-
ous adjoint-equation that is also discretized with DGM and
fourth-order Runge–Kutta. Results for Burgers equations
using both distributed and boundary control (Dirichlet and
Neumann) are presented to validate our approach. We then
present preliminary results for unsteady flows governed by
the compressible Navier–Stokes equations including the
suppression of vortex shedding in the wake of a circular
cylinder. In the future, our DGM/optimal-control formula-
tion will be used to develop active flow-control strategies
for aeroacoustic applications and the paper ends with a
preliminary state calculation for noise generation via blade-
vortex-interaction.
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Introduction
The numerical solution of optimal control problems gov-

erned by the unsteady compressible Navier–Stokes equa-
tions is a challenging problem that requires careful mathe-
matical formulation, accurate state solution, efficient gradi-
ent computation, and convergent optimization algorithms.
As a simplified model of the Navier–Stokes (NS) equation,
the one-dimensional Burgers equation represents many of
the properties of NS equations, such as nonlinear con-
vection and viscous diffusion leading to shock waves and
boundary layers. Given this, the viscous Burgers equation
has received significant attention [1–3] and recent research
has focused on the control of Burgers flow as a model for
control of Navier–Stokes flows [2, 4]. To meet the chal-
lenges associated with optimal control of unsteady flow,
we have developed a new computational framework based
on the discontinuous Galerkin method (DGM) that allows
for spectral accuracy on unstructured grids with the abil-
ity to use local hp-refinement. These capabilities will be
of particular importance for large-scale optimal control for
complex fluid flows such as those encountered in aeroa-
coustic applications. This paper presents our efforts in
this direction by applying DGM to the solution of optimal
control problems for flows governed by the viscous Burg-
ers equation and preliminary results for the compressible
Navier–Stokes equations.

Since the number of control variables is large in the
problems that we target, an adjoint equation is utilized
to efficiently evaluate the gradient of the objective func-
tional with-respect-to the control. In general, there
are two approaches to adjoint-based gradient evaluation:
the optimize-then-discretize approach and discretize-then-
optimize approach. One of the goals of our research is to
evaluate and compare these two approaches for formulating
and solving optimal control problems using DGM. In this
paper, we focus on the optimize-then-discretize approach
by presenting a discussion of the problem formulation, im-
plementation, and results. While the focus of the current
paper is for Burgers flows, some preliminary results for un-
steady, compressible Navier–Stokes flows are provided at
the end of the paper. A preliminary version of this paper
was presented at the 2003 AIAA Region IV Student paper
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Conference in Houston, Texas.

Problem Formulation
Governing equations

The Burgers equation is given by

∂u

∂t
+

1
2

∂u2

∂x
− ν

∂2u

∂x2
= f + Φ (1)

with boundary conditions

u(0, t) = φL

u,x(L, t) = φR (2)

and initial condition

u(x, 0) = u0(x) (3)

in which Φ is the distributed control, and φL and φR are
the boundary controls, with the spatial domain Ω = [0, L].
Here, we set the source term, f = 0.

Objective functional

For the Burgers control problems in this paper, the ob-
jective functional is defined as

J =
�

2

∫ t0+T

t0

∫ L

0

Φ2dxdt +
�1

2

∫ t0+T

t0

φ2
Ldt

+
�2

2

∫ t0+T

t0

φ2
Rdt +

ω1

2

∫ t0+T

t0

∫ L

0

(u − ũ)2dxdt

+
ω2

2

∫ L

0

[u(x, tf ) − ū(x)]2 dx. (4)

where ũ and ū are the distributed and terminal target states,
respectively.

Optimality equations

First, we form a L2-inner product by introducing an ad-
joint variable λ as

〈Nu, λ〉 =∫ t0+T

t0

∫ L

0

(
∂u
∂t + 1

2
∂u2

∂x − ν ∂2u
∂x2 − Φ

)
λdx dt , (5)

whereNu = 0 denotes the Burgers equation (1).
Computing the variation of (5) with respect to the state

variable u, and integrating by parts yields

〈u′,N ∗λ〉 =
∫ L

0

u′λ

∣∣∣∣∣
tf

dx +
∫ t0+T

t0

uλu′
∣∣∣∣∣
L

0

dt

−
∫ t0+T

t0

ν λ
∂u′

∂x

∣∣∣∣
L

0

dt +
∫ t0+T

t0

ν
∂λ

∂x
u′
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L

0

dt

−
∫ t0+T

t0

∫ L

0

λΦ′dxdt , (6)

whereN ∗ denotes the adjoint operator, defined as

N ∗λ = −∂λ

∂t
− u

∂λ

∂x
− ν

∂2λ

∂x
. (7)

The variation of the objective functional (4) with respect
to the control is

J ′ = �

∫ t0+T

t0

∫ L

0

ΦΦ′ dx dt

+ �1

∫ t0+T

t0

φLφ′
L dt + �2

∫ t0+T

t0

φRφ′
R dt

+ ω1

∫ t0+T

t0

∫ L

0

(u − ũ)u′ dx dt

+ ω2

∫ L

0

(utf
− ū)u′

tf
dx . (8)

According to the theory of Lagrange multipliers,

J ′ − 〈Nu, λ〉′ = 0

gives the adjoint equation

−∂λ

∂t
− u

∂λ

∂x
− ν

∂2λ

∂x
= ω1(u − ũ) (9)

with the boundary conditions

λ(0, t) = 0
uλ(L, t) + νλ,x(L, t) = 0 (10)

and end condition

λ(x, tf ) = ω2(u(x, tf ) − ū(x)) . (11)

The optimality conditions are the state-equation (1) with
boundary conditions (2) and initial condition (3), the ad-
joint equation (9) with boundary conditions (10) and end
condition (11) and the gradient equations, given by

∇ΦJ = lΦ + λ,

∇φLJ = l1φL + ν
∂λ

∂x

∣∣∣∣
x=0

,

∇φRJ = l2φR + νλx=L .

Solution of the optimality equations yields the gradient of
the objective functional with respect to the control which
should be equal to zero at the optimum. We use a nonlinear
conjugate gradient method to solve this optimization prob-
lem and more details regarding optimal control of Burgers
flows can be found in [5].

Numerical Method
The optimality equations are discretized with a discon-

tinuous Galerkinmethod in space and fourth-order accurate
Runge-Kutta time-integration.

Spatial Discretization

We denote the boundary of the domain Ω as ∂Ω =
ΓD ∪ ΓN where ΓD is the portion of the boundary where
Dirichlet conditions are specified and ΓN is the portion of
the boundary where Neumann conditions are set. The spa-
tial domain Ω is partitioned into a set of non-overlapping
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elementsΩe that each have a Lipschitz boundary ∂Ωe. The
element boundary is denoted as Γ = {ΓD, ΓN , Γ0} where
Γ0 are the inter-element boundaries. Let Ω1 and Ω2 be two
adjacent elements; let Γ12 = ∂Ω1 ∩ ∂Ω2; and let n(1) and
n(2) be the corresponding outward unit normal vectors at
that point.
Let u(e) and F (e) be the trace of a state u and flux vector

F , respectively, on Γ12 from the interior of sub-domainΩe.
Then, we define the average 〈 · 〉 and jump [·] operators on
Γ12 as

[u] = u(1)n(1) + u(2)n(2) (12a)

[Fn] = F (1)n(1) + F (2)n(2), (12b)

〈u〉 =
1
2

(
u(1) + u(2)

)
, (12c)

〈F 〉 =
1
2

(
F (1) + F (2)

)
, (12d)

where Fn = Fn and n = −1 on a left boundary and n = 1
on a right boundary. Defining the convective and viscous
fluxes as

F =
u2

2
, F v = νu,x ,

the discontinuous Galerkin formulation for the Burgers
equation is∑

e

∫
Ωe

{
w(u,t − Φ) + w,x(F v − F )

}
dΩ −

∫
Γ0

[wn]
〈
F̂ v − F

〉
dΓ −

∫
Γ0

〈νw,x〉 [n(û − u)] dΓ

−
∫

ΓD

(νw,n)(u − φL) + w
(
F v

n − F̂ v
n (u, φL)

)
dΓ

−
∫

ΓN

w(νφR − F̂ v
n (u, u)) dΓ = 0 (13)

where F̂ , F̂ v and û are numerical fluxes. For the convective
numerical inviscid flux, we use the Lax-Friedrichs flux [6],
which can be expressed as

F̂ (u−, u+) =
1
2

[
F (u−) + F (u+) + λm(u− − u+)

]
where λm = |∂F/∂u|. For the numerical viscous flux, F̂ v,
and solution flux, û, we use the Bassi-Rebay method [7,
8]. All boundary conditions are enforced weakly through
the numerical fluxes and additional details regarding weak
boundary condition enforcement can be found in [9, 10]
The DGM discretization for the adjoint equation (9) is

similar to that of state (13),∑
e

∫
Ωe

{
w (λ,t − λu,x + ω1(u − ũ)) −

w,x(Gv + G)
}
dΩ +∫

Γ0

[wn]
〈
Ĝv + G

〉
dΓ +

∫
Γ0

〈νw,x〉
[
n(λ̂ − λ)

]
dΓ

−
∫

ΓD

{
νw,nλ − w

(
Gv

n − Ĝv
n(λ, 0)

)}
dΓ

+
∫

ΓN

w(−uλ − Ĝv
n(λ, λ)) dΓ = 0 (14)

where G ≡ uλ and Gv ≡ νλ,x. Similar to the state dis-
cretization, we use the Lax–Freidrichs and Bassi–Rebay
numerical fluxes and the adjoint boundary conditions (10)
are applied in evaluating the numerical fluxes on the do-
main boundary.

Temporal Discretization

A fourth-order accurate explicit Runge-Kutta method is
used, which is symmetric and therefore well-suited for op-
timal control problems [11].

Results
The following results all use the continuous adjoint ap-

proach presented above. For all cases, the initial condition
is the same as that in Chang’s Ph.D. thesis [5] and is given
by

u0(x) = sin (mπ tan(cs(2x − 1)) / tan(cs) (15)

where cs is a parameter that controls the stretching of the
initial profile. This initial profile can lead to boundary lay-
ers near the domain ends. We choose cs = 1.3. Our space
and time domain are 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1, respec-
tively. The viscosity for all cases is ν = 0.01. For spatial
discretization, the domain is divided into 40 equally sized
elements. Unless otherwise specified, fourth-order (p = 4)
polynomial representations are used on each element and
the time-step is ∆t = 0.00025.

Distributed Control

The first test case corresponds to that done in Ref. [5]
and is used to validate our implementation. The control
objective is to sustain the initial profile, so the objective
functional is defined as

J =
�

2

∫ 1

0

∫ 1

0

Φ2dxdt

+
1
2
ω1

∫ 1

0

∫ 1

0

(u − u0)
2 dxdt

+
1
2
ω2

∫ 1

0

[u(x, 1) − u0]
2
dx. (16)

In our simulations, ω1 = 1, ω2 = 1, and � = 0.01.
Figure 1 shows that as the number of optimization iter-

ations increases, the state solution at t = tf = 1 becomes
closer and closer to the target solution. The distributed op-
timal control profile, Φ(x), is shown in Fig. 2 after four
optimization iterations which demonstrates that the control
has boundary layers near the left and right boundaries and
that the control changes in time in order to drive the solu-
tion toward the target state.
The evolution of the objective function, J , as the num-

ber of optimization iterations increases is shown in Fig. 3.
From this figure, we see that the objective functional drops
to a value of 8 × 10−3 with no significant decrease in J
beyond about 3 iterations which is consistent with prior
results [5]. Taking advantage of the ability to perform
p-refinement in DGM, Fig. 3 also shows results for both
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Fig. 1 Distributed control of Burgers equation for p = 4:
initial profile; the profile without control at

t = 1; profile with control at t = 1 after first iteration;
profile with control at t = 1 after second iteration;
profile with control t = 1 after third iteration.

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1.5

-1

-0.5

0

0.5

1

1.5

t=0.2

t=0.4

t=0.6

t=0.8

Fig. 2 Distributed control profile after fourth iteration at t =
0.2, 0.4, 0.6, and 0.8.

p = 2 and p = 6. Overall the optimal-control solutions
are similar for all values of p which indicates that this dis-
tributed control problem is well resolved, even at p = 2.

Boundary Control

In order to validate our implementation for boundary
control, we formulate our test cases as inverse problems.
Given a specified boundary condition, the corresponding
state solutions are first obtained, which then become our
objective solution ũ. Using this as our objective solution in
the objective functional, we then solve the optimal control
problem and compare the computed boundary values to the
boundary condition that was originally prescribed.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
1E-3

0.01

0.1

 

 

J

Iter

Fig. 3 Objective functional, J , at different iterations for dis-
tributed control: p = 2; � p = 4; � p = 6.

Dirichlet Boundary Control

The initial condition is the same as that used for dis-
tributed control. Our control objective is to achieve the
objective solution ũ, which is obtained using the prescribed
boundary condition φ∗

L = 2t2. Thus, the objective func-
tional is

J =
�1

2

∫ 1

0

φ2
Ldt

+
ω1

2

∫ 1

0

∫ 1

0

(u − ũ)2dxdt

+
1
2
ω2

∫ 1

0

[u(x, tf ) − ũ(x, tf )]2 dx (17)

where ω1 = 1000, ω2 = 1, and �1 = 0.001. The initial
guess for the boundary control is φL = 2tf t so that the
final boundary condition is satisfied at t = 0.
Comparing the target state and the optimal state solu-

tions after 24 iterations (see Fig. 5) shows that the agree-
ment is excellent. It is also shown in Fig. 6 that the control
converges to the target boundary condition φ∗

L = 2t2. This
can be seen more clearly in Fig. 7 which shows the error
in the computed control compared to the target boundary
condition.

Figure 8 presents the evolution of the objective func-
tional showing that the value converges after about 20 op-
timization iterations for p = 4. Also shown in Fig. 8 are
convergence histories for other values of p. Improving res-
olution does appear to lead to a slightly smaller value of J
although convergence is slightly slower for larger p.

Neumann Boundary Control

We now consider Neumann boundary control where the
control variable is φR at x = 1. Our control objective is to
sustain the target solution ũ obtained using the prescribed
boundary condition φ∗

R = −31.52(1−2
√

t). The objective
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0.5

1

1.5

2

Fig. 4 State solution with prescribed Dirichlet boundary con-
dition φ∗

L = 2t2 for p = 4: initial profile; the
profile at t = 0.2; profile at t = 0.4; profile at
t = 0.6; profile at t = 0.8; profile at t = 1.

x

u

0 0.25 0.5 0.75 1
-1

-0.5

0

0.5

1

1.5

2

Fig. 5 Final optimal state solution using Dirichlet boundary
control for p = 4: initial profile; the profile at
t = 0.2; profile at t = 0.4; profile at t = 0.6;

profile at t = 0.8; profile at t = 1.

functional for this problem is defined as

J =
�2

2

∫ 1

0

φ2
Rdt

+
ω1

2

∫ 1

0

∫ 1

0

(u − ũ)2dxdt

+
1
2
ω2

∫ 1

0

[u(x, tf ) − ũ(x, tf )]2 dx (18)

where ω1 = 100, 000, ω2 = 1, and �2 = 1 × 10−7. The
initial control is the linear distribution φR = −31.52(1 −
2
√

tf )t/tf .
After several iterations, the optimal solution becomes al-

most identical to the target solution as seen by comparing

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Lφ

Fig. 6 Iteration history for Dirichlet optimal control with p =
4. The arrow shows the direction of increasing optimization
iterations.

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

L
   

   
δφ

Fig. 7 Iteration history for the error in the Dirichlet optimal
control with p = 4. The arrow shows the direction of increas-
ing optimization iterations.

the target solution (Fig. 9) with the final optimal state solu-
tion after 24 optimization iterations (Fig. 10).
Good convergence is also obtained in the control pro-

files (Fig. 11), however, by plotting the difference between
the optimal control and the target control (Fig. 12) we see
that even after 24 iterations there are noticeable differences
between the two, especially for early times. These dif-
ferences are larger than those encountered for Dirichlet
control. Figure 13 shows the convergence history for the
objective function, J , for both p = 4 as well as other val-
ues of p. Increases in p beyond a value of 4 do not lead to
a significant change in the optimal solution. It is important
to remember that a gradient-based optimization algorithm
only finds local minima — there is no guarantee that the
global minima will be found. Thus it is possible that the
current results are at a local optimum which would explain
why we are not able to exactly recover the prescribed con-
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Fig. 8 Evolution of the objective functional, J , for Dirichlet
control, p = 2; • p = 4; � p = 6; ∇ p = 7.
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1

Fig. 9 State solution with prescribed Neumann boundary
condition φ∗

R = −31.52(1 − 2
√

t) using p = 4: ini-
tial profile; the profile at t = 0.25; profile at
t = 0.5; profile at t = 0.75; profile at t = 1.

trol profile for this inverse problem.
To determine whether an improved optimal solution can

be obtained for this problem, we considered two additional
initial guesses for the control profile. First, we added very
small perturbations to the target control profile so that the
initial control profile took the form φR = −31.52(1 −
2
√

t) + ε. In this case the optimal control quickly con-
verged to the target control. Next, we tried an initial control
that contained a finite-amplitude oscillation about the tar-
get control, i.e. φR = −31.52(1 − 2

√
t) + 30t(1 − t).

With this starting profile, Figs. 14 and 15 show that after
several iterations, the optimal control almost recovers the
target control profile. This is also seen in Fig. 16 which
compares the evolution of J given two different initial con-
trol distributions. Clearly, these two cases lead to a more
optimal solution confirming the fact that the first case was
a local minimum.

x

u

0 0.25 0.5 0.75 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Fig. 10 Final optimal state solution for Neumann boundary
control using p = 4: initial profile; the profile
at t = 0.25; profile at t = 0.5; profile at t =
0.75; profile at t = 1.

t
0 0.25 0.5 0.75 1

-30

-20

-10

0

10

20

30

Rφ

Fig. 11 Iteration history for Neumann optimal control using
p = 4. The arrow shows the direction of increasing optimiza-
tion iterations.

Summary of Burgers Control

In the prior sections we have described our continuous
adjoint formulation and implementation for optimal control
of problems governed by the unsteady Burgers equation
where both the state and adjoint equations are discretized
using discontinuous Galerkin in space. Results were pre-
sented for distributed control as well as both Dirichlet and
Neumann boundary control and, in all cases, reductions in
the objective function of at least one order of magnitude (or
more) were obtained with a modest number (less than 6) of
optimization iterations. Similar reductions in the gradient
of the objective function (not shown here, but see Fig. 20
for similar results for Navier–Stokes flows) are also ob-
tained indicating that our solutions are indeed approaching
optimality. These results for Burgers control give us con-
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t
0 0.25 0.5 0.75 1

-10

0

10

20

R
δφ

Fig. 12 Iteration history for the error in the Neumann op-
timal control for p = 4. The arrow shows the direction of
increasing optimization iterations.

1 2 3 4 5 6

0.1

1

10

 

 

J

Iter

Fig. 13 Evolution of the objective functional, J , for optimal
Neumann boundary control: p = 2; • p = 4; � p = 6;
∇ p = 7.

fidence in both our formulation and implementation of the
continuous adjoint equation, boundary conditions, and gra-
dient evaluation. With this, we now present some prelimi-
nary results for optimal control of unsteady Navier–Stokes
flows.

Optimal Control of Cylinder Wakes
We are currently working to extend our capability to in-

clude optimal boundary control of unsteady, compressible
Euler and Navier–Stokes flows. In order to validate our
approach, we consider the control of the unsteady wake
behind a circular cylinder at low Reynolds numbers. Con-
siderable research has been conducted for cylinder wake
control using a variety of approaches including distributed
controls, boundary control, and cylinder rotation (see e.g.,
Refs. [12–16]).
We consider steady suction/blowing on the entire cylin-

t
0 0.25 0.5 0.75 1

-30

-20

-10

0

10

20

30

R

Fig. 14 Iteration history for Neumann boundary control
starting from initial control φR = −31.52(1−2

√
t)+30t(1−t)

and using p = 6. The arrow shows the direction of increasing
optimization iterations.

t
0 0.25 0.5 0.75 1

≠3

≠2

≠1

0

1

2

3

4

5

6

7

R

Fig. 15 Iteration history for the error in the Neumann bound-
ary control starting from initial control φR = −31.52(1 −
2
√

t) + 30t(tf − t) and using p = 6. The arrow shows the
direction of increasing optimization iterations.

der surface as the control and find an optimal spatial
distribution of the control to drive the unsteady wake at
Re = 100 to match the steady wake at Re = 20, both
at a freestream Mach number of 0.3. Our problem setup
is similar to that of Li et al. [16], although we consider
compressible flow with somewhat different boundary con-
ditions, a slightly modified objective function (described
below), and our control is distributed over the entire cylin-
der surface. The domain (see Fig. 17) is rectangular Ω =
[−3, 19] × [−3, 3.1] with the cylinder center located at
(0, 0). A block structured mesh using 576 quadrilaterals
was generated using a special purpose grid generator [17]
and each quadrilateral has polynomial order p = 4.
While the problem geometry described above is the same
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Fig. 17 Element mesh for cylinder wake control.

as in Ref. [16], we use non-reflecting boundary conditions
on the top and bottom boundaries, while slip walls were
imposed in [16]. Since our formulation is compressible,
we must also prescribe a thermal boundary condition at the
cylinder surface and the results presented here use an adia-
batic wall boundary condition. Additional details regarding
the problem setup, discretization, and state solutions can be
found in [9].

Objective functionals

Similar to that in [16], the objective functional for the
current problem is defined as a full flowfield tracking prob-
lem where the controlled flow is driven toward the steady
laminar flow at Re = 20. Thus, our objective is to con-
trol the unsteady flow at Re = 100 so that it approaches
the steady flow at Re = 20 and we define our objective
function as

J =
1
2

∫
t

∫
Ω

((ρ − ρo)2 + (ρu − ρouo)2

+ (ρv − ρovo)2 + (ρE − ρoEo)2)dΩdt

+
ω1

2

∫
t

∫
Γc

g2dΓdt (19)

where ρo, ρouo, ρovo, ρoEo are the conservation variables
of the target flow field (steady flow at Re = 20) and g is
the steady control (blowing/suction velocity) on the cylin-
der surface, Γc. Due to our compressible formulation, our
objective function targets differences in the conservation
variables while Li et al. target differences in the velocity
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Fig. 18 Contours of streamwise momentum, ρu, for the un-
controlled steady-state solution at Re = 20.

components. In the future, we will also consider a velocity
tracking objective functional. Similar to Li et al. [16] we
define our time window, T , as one shedding period. After
obtaining an adequately converged optimal control distri-
bution, we then continue advancing the solution using this
steady control profile to observe its long time influence on
the flow.

Adjoint formulation

The gradient computation is based on the continuous
adjoint formulation for the Navier–Stokes equations de-
scribed in [18–21] and these adjoint equations are dis-
cretized using DGM. Details of the formulation and imple-
mentation will appear in forthcoming publications. Similar
to the Burgers problems described above, the adjoint solu-
tion is used to compute the gradient of the objective func-
tional with respect to the control and a nonlinear conjugate
gradient method is used to update the control. Details will
appear in subsequent publications.

Results

Figure 18 presents streamwise momentum contours for
the steady laminar flow state at Re = 20, which is our target
solution. Figure 19 shows snapshots of the uncontrolled
flow at Re = 100 during one vortex shedding period which
takes the form typical of the Kármán vortex street.
Starting from the fully developed Kármán vortex street

at Re = 100, we then proceed to solve the optimal con-
trol problem described above and the convergence history
of the objective functional and norm of the gradient of the
objective function are shown in Fig. 20. The majority of
the reduction in J occurs in the first 4 iterations which is
similar to observed for the Burgers control problems dis-
cussed above. However, gradient of the objective function
continues to decrease with additional iterations and drops
by more than two orders of magnitude after 20 iterations
(recall that it is the square of the gradient norm that is plot-
ted in Fig. 20.)
Taking the control distribution after 20 iterations as the

optimal solution, we then continued the simulation for an
additional 20 vortex shedding periods and snapshots of
streamwise momentum are shown in Fig. 21. Clearly, the
vortex shedding is nearly suppressed by t = 40 (and com-
putations for longer times verifies that shedding is com-
pletely suppressed). These results are qualitatively similar
to the incompressible results of Li et al. [16] and our future
work will report in greater detail issues in optimal control
of circular cylinder wakes for compressible flows. Like-
wise, given this success, we will also apply our control
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Fig. 19 Contours of streamwise momentum, ρu, for one vor-
tex shedding period for the uncontrolled flow at Re = 100: (a)
t = 0.2, (b) t = 0.8, (c) t = 1.4, and (d) t = 2.

sq
u

ar
ed

Fig. 20 Optimization history for the objective functional and
the norm of the gradient of the objective functional squared.
The optimization time window is one shedding period which
corresponds to 2 time units: • gradient norm squared; ob-
jective functional.

framework for optimal control of aeroacoustic flows and
preliminary steps in this direction are described in the next
section.

Progress Toward Aeroacoustic Control
A practical problem of interest for aeroacoustic flow

control is suppression of the noise arising from Blade Vor-
tex Interaction (BVI) that can occur for rotor-craft in low
speed, descending fight conditions. While there have been
a number of different and widely varied approaches to con-
trolling BVI noise presented in the literature (see [19] and
reference there-in for a brief review), our research group
has been interested in developing on-blade controls using
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Fig. 21 Contours of streamwise momentum, ρu, for the con-
trolled flow at Re = 100: (a) t = 2, (b) t = 14, (c) t = 26,
(d) t = 30, (e) t = 40. Note that the steady optimal con-
trol is obtained over the first two time units, but is then used
throughout the remainder of the computation.

optimal control theory. In the recent work of Collis et
al. [19], it is shown for a model BVI problem that a 13db
reduction in forward scattered sound can be achieved with
small amplitude suction/blowing near the leading edge.
Unfortunately, the computational tools developed and used
in [19] are not able to represent the complex geometries
and flows encountered in more realistic problems. This, in
fact, was the motivation to develop the current DGM based
tool described here.
As an example of the potential of our current DGM

based approach, Fig. 22 shows contours of pressure from
the parallel interaction of a vortex with a Bell AH-1 rotor
blade. Exploiting the local conservation property of DGM,
this simulation uses a novel multi-model approach with the
Navier–Stokes equations solved near the blade surface and
in the wake, the linear Euler equations in the farfield, and
a sponge (or buffer) region used to absorb unsteady vorti-
cal motions near the outflow boundary. This multi-model
approach can lead to significant improvements in compu-
tations efficiency with little or no loss of fidelity. Future
publications will describe this multi-model formulation in
detail and we are currently extending our optimal control
framework for these types of challenging aeroacoustic con-
trol problems.
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Fig. 22 Contours of scattered pressure, p, for a single vortex
interacting with a Bell AH-1 rotor blade.

Conclusions and Future Work
This work focuses on the application of discontinuous

Galerkin methods for optimal control of unsteady flows.
We have derived the optimality system, including the con-
tinuous adjoint equation for viscous Burgers and com-
pressible Navier–Stokes state equations. Both state and
adjoint equations are discretized using the discontinuous
Galerkin method. Optimal control results are presented
for distributed and boundary control of Burgers flows and
these results validate our formulation and implementation.
Preliminary results for boundary control of compressible
Navier–Stokes flows are presented for suppression of un-
steady shedding from a circular cylinder. By optimizing
over only one shedding period, we obtain a steady distri-
bution of surface normal velocity that suppresses shedding
at Re = 100 and our results are in qualitative agreement
with recently reported incompressible results. Both the
Burgers and Navier–Stokes studies demonstrate good per-
formance for our continuous adjoint formulation and DGM
discretization. A novel feature of DGM is that all bound-
ary conditions are set weakly through numerical fluxes and
these results demonstrate the viability of this method for
boundary control. Our future work will apply a similar for-
mulation for optimal control of multidimensional Navier–
Stokes flows with application to aeroacoustic flow control.
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